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Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance I

The expected value indicates the average value of a random variable.

Given a probability space (Ω,F ,P) any random variable X that is
integrable w.r.t. P, it is defined as E[X] =

∫
ΩX(ω)dP(ω).

(integrable w.r.t. P simply means E[|X|] =
∫
Ω |X(ω)|dP(ω) < ∞.)

In practice, however, corresponding to the probability density/mass
function, the expected value is often defined separately for continuous
and random variables (in an equivalent but easier to read way):

Hannah Kümpel Multivariate Verfahren 3 / 104



Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance II

Definition (Expected value)
For a continuous random variable X with distribution defined via density f
the expected value is defined as

E[X] =

∫
R
x · f(x)dx .

For a discrete random variable X with distribution defined via probability
function p the expected value is defined as

E[X] =
∑

x∈supp(p)

x · p(x) .
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Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance III

Some rules that follow directly from the corresponding properties of the
integral:

Linearity: For c ∈ R and real, integrable random variables X,Y on the
probability space (Ω,F ,P) we have

The random variable Z := cX is clearly also an integrable random
variable on (Ω,F ,P) and E[Z] = E[cX] = cE[X] .

The random variable Z := X + Y is clearly also an integrable random
variable on (Ω,F ,P) and E[Z] = E[X + Y ] = E[X] + E[Y ] .

Triangle inequality: For a real, integrable random variable X on the
probability space (Ω,F ,P) it holds that |E[X]| ≤ E[|X|] .
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Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance IV

The variance of a random variable X is denoted by Var(X), V(X),
or simply σ2, if the context does not require the RV to be specified.

Given a probability space (Ω,F ,P) any random variable X that is
square integrable w.r.t. P, it is defined as

Var(X) = E
[
(X − E[X])2

]
.

(Square integrable w.r.t. P simply means
E[|X2|] =

∫
Ω |X(ω)2|dP(ω) < ∞.)

The standard deviation of a random variable is a measure of how
dispersed the data is in relation to the mean. It is often denoted by σ
and given by the square root of the variance, i.e. σ =

√
Var(X).
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Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance V

Alternative representation of Variance
Given the Linearity of the expected value, it immediately follows that we
can also write the variance of a random variable X as the mean of the
square of X minus the square of the mean of X:

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2X E[X] + E[X]2

]
= E

[
X2
]
− 2E[X] E[X] + E[X]2

= E
[
X2
]
− E[X]2 .
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Concepts and examples for RVs with univariate distribution Recap: Expectation and Variance

Recap: Expectation and Variance VI

Some helpful basic properties of the variance of a random variable X are,
for some constant a ∈ R :

Var(X) ≥ 0,

Var(a) = 0,

Var(X + a) = Var(X),

Var(aX) = a2Var(X).
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Relevant characteristics of distributions

The next slides will summarize some relevant univariate distributions, giving
the following characteristics for each:

discrete or continous - i.e. is the distribution defined via a
(probability) density (function) or a probability (mass) function?

The probability density/mass function and its
Parameters

Support - i.e. the subset of the domain of the defining probability
density/mass function containing those elements that are not mapped
to 0.

The expected value and variance of any random variable following
the distribution.
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Normal distribution - continuous
▶ Notation: X ∼ N (µ, σ2)

▶ Density: f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

▶ Parameters: µ ∈ R (location), σ2 ∈ R>0 (scale)
▶ Support: R
▶ E[X] = µ; Var[X] = σ2

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

(Continuous) Uniform distribution - continuous
▶ Notation: X ∼ U(a, b)

▶ Density: f(x) =

{
1

b−a for x ∈ [a, b]

0 otherwise
▶ Parameters: a, b,∈ R with a < b
▶ Support: [a, b]
▶ E[X] = 1

2 (a+ b); Var[X] = 1
12 (b− a)2

Density plot CDF plot
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Exponential distribution - continuous
▶ Notation: X ∼ Exp(λ)
▶ Density: f(x) = λe−λx

▶ Parameters: λ ∈ R>0 (rate)
▶ Support: R≥0

▶ E[X] = 1
λ ; Var[X] =

1

λ2

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

χ2 distribution - continuous
▶ Notation: X ∼ χ2 or χ2

k

▶ Density: f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

▶ Parameters: k ∈ N (degrees of freedom)
▶ Support: R≥0, or R>0 if k = 1

▶ E[X] = k; Var[X] = 2k

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Student’s-t distribution - continuous
▶ Notation: X ∼ tν

▶ Density: f(x) =
Γ( ν+1

2 )
√
νπ Γ( ν

2 )

(
1 + x2

ν

)− ν+1
2

▶ Parameters: ν ∈ R>0 (degrees of freedom)
▶ Support: R
▶ E[X] = 0 for ν > 1, else undefined; Var[X] = ν

ν−2 for ν > 2, else undefined

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Gamma distribution - continuous
▶ Notation: X ∼ Γ(k, 1

θ ) or Gamma(k, 1
θ )

▶ Density: f(x) =
1

Γ(k)θk
xk−1e−

x
θ

▶ Parameters: k, θ ∈ R>0 (shape, scale) Note: there is an alternative parametrization

▶ Support: R>0

▶ E[X] = kθ; Var[X] = kθ2

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Beta distribution - continuous
▶ Notation: X ∼ Beta(α, β)

▶ Density: f(x) = xα−1(1−x)β−1

B(α,β) with B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
▶ Parameters: α, β ∈ R>0

▶ Support: [0, 1]

▶ E[X] = α
α+β ; Var[X] = αβ

(α+β)2(α+β+1)

Density plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Binomial distribution - discrete
▶ Notation: X ∼ B(n, p)

▶ Probability (mass) function: p(x) =
(
n

x

)
pxqn−x

▶ Parameters: n ∈ N0, p ∈ [0, 1], q = 1− p
(number of trials, success probability for each trial, complementary probability)

▶ Support: N0

▶ E[X] = np; Var[X] = npq

Probability (mass) function plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Poisson distribution - discrete
▶ Notation: X ∼ Pois(λ) or Poi(λ)

▶ Probability (mass) function: p(x) =
λxe−λ

x!
▶ Parameters: λ ∈ R≥0

▶ Support: N0

▶ E[X] = λ; Var[X] = λ

Probability (mass) function plots CDF plots

Hannah Kümpel Multivariate Verfahren 18 / 104



Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Negative Binomial distribution - discrete
▶ Notation: X ∼ NB(r, p) or negBin(r, p)

▶ Probability (mass) function: p(x) =
(
x+ r − 1

x

)
· (1− p)xpr,

▶ Parameters: r ∈ N0, p ∈ [0, 1] (number of successes until the experiment is
stopped, success probability in each experiment)

▶ Support: N0

▶ E[X] =
r(1− p)

p
; Var[X] =

r(1− p)

p2

Probability (mass) function plots CDF plots
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Concepts and examples for RVs with univariate distribution Some relevant univariate distributions

Hypergeometric distribution - discrete
▶ Notation: varies, sometimes X ∼ H(N,K, n)

▶ Probability (mass) function: p(x) = (Kx)(
N−K
n−x )

(Nn)
▶ Parameters: N ∈ N0, K ∈ {0, 1, 2, . . . , N}, n ∈ {0, 1, 2, . . . , N} (population

size, number of success states in the population, number of draws)
▶ Support: {max (0, n+K −N), . . . , min (n, K)}

▶ E[X] = n
K

N
; Var[X] = n

K

N

N −K

N

N − n

N − 1

Probability (mass) function plots CDF plots
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Pairs of random variables Joint, marginal, and conditional distributions
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Pairs of random variables Joint, marginal, and conditional distributions

Joint consideration of two random variables X and Y I

Given two random variables X and Y , a natural quantity of interest is
their joint distribution or joint cumulative distribution function,
given by

FXY (x, y) = P(X ≤ x, Y ≤ y).

For cases where one of the random variables X and Y is continuous
and the other discrete, FXY can be easy so define in some cases but
rather complicated in others.

In this lecture, we will focus only on jointly continuously/discretely
distributed random variables:
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Pairs of random variables Joint, marginal, and conditional distributions

Joint consideration of two random variables X and Y II

Definition (joint probability density/mass function)

Two continuous random variables X and Y are jointly continuous if
there exists a nonnegative function fXY : R2 −→ R, so that, for any
set A := [aX , bX ]× [aY , bY ] with aX , aY , bX , bY ∈ R, we have

P
(
(X,Y ) ∈ A

)
=

∫ bY

aY

∫ bX

aX

fXY (x, y) dxdy

The function fXY (x, y) is called the joint probability density
function of X and Y .

The joint probability (mass) function of two jointly discrete
random variables X and Y is defined as

pXY (x, y) := P(X = x, Y = y)
(
=̂ P(X = x and Y = y)

)
.
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Pairs of random variables Joint, marginal, and conditional distributions

Marginal distributions for random variables X and Y I

Next, let pX and pY denote the probability density OR mass functions of
the random variables X and Y , respectively.

Clearly, if
we start with pX and pY as given and

know that X and Y are independent and both either discretely or
continuously distributed

it immediately follows that the joint probability density/mass function
is given by

pXY (x, y) = pX(x) · pY (y) .

Conversely, if the joint probability density/mass function of jointly
distributed random variables X Y is given, we can deduce the
probability density/mass functions regardless of dependence of X
and Y by calculating the marginal distributions:
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Pairs of random variables Joint, marginal, and conditional distributions

Marginal distributions for random variables X and Y II

Definition (Marginal probability density functions)

For two jointly continuous random variables X and Y with joint density
fXY , the densities defining the distributions of X and Y , respectively, are
given by

fX(x) =

∫ ∞

−∞
fXY (x, y)dy , ∀x ∈ R, and

fY (y) =

∫ ∞

−∞
fXY (x, y)dx , ∀y ∈ R.

Note: The following holds for both jointly discrete and continuous random
variables: Given a joint CDF FXY , the marginal CDFs are given by:

FX(x) = FXY (x,∞) and FY (y) = FXY (∞, y) .
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Pairs of random variables Joint, marginal, and conditional distributions

Marginal distributions for random variables X and Y III

Definition (Marginal probability mass functions)

For two jointly discrete random variables X and Y with joint probability
function pXY , the probability functions defining the distributions of X and
Y , respectively, are given by

pX(x) =
∑

yj∈supp(pY )

pXY (x, yj) , ∀x ∈ supp(pX) and

pY (y) =
∑

xi∈supp(pX)

pXY (xi, y) , ∀y ∈ supp(pY ) .

Note: The following holds for both jointly discrete and continuous random
variables: Given a joint CDF FXY , the marginal CDFs are given by:

FX(x) = FXY (x,∞) and FY (y) = FXY (∞, y) .
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Pairs of random variables Joint, marginal, and conditional distributions

Conditional distributions for random variables X and Y I

Next, let pX and pY again denote the probability density OR mass
functions of the random variables X and Y , respectively, and pXY denote
the joint probability density/mass function of X and Y .

Definition (Conditional probability density/mass function)

In the above setting, the conditional probability density/mass function
of X given Y and vice versa is defined by

pX|Y (x, y) =
pXY (x, y)

pY (y)
.
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Pairs of random variables Joint, marginal, and conditional distributions

Conditional distributions for random variables X and Y II

Given this, note the following:

1 If X and Y are independent,

pX|Y (x, y) =
pXY (x, y)

pY (y)
=

pX(x)pY (y)

pY (y)
= pX(x) .

2 For some set A, the conditional probability that X ∈ A given that
Y = a for some fixed value a is given by

P(X ∈ A|Y = a) =
∫
A
fX|Y (x, a)dx, if X and Y are continuously

distributed.

P(X ∈ A|Y = a) =
∑

xi∈A∩supp(pX)

pX|Y (xi, a), if X and Y are discretely

distributed.
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Pairs of random variables Joint, marginal, and conditional distributions

Conditional distributions for random variables X and Y III

3 The conditional CDF of X given Y = a for some fixed value a is given
by

If X and Y are continuously distributed:

FX|Y (x, a) = P(X ≤ x|Y = a) =

∫ x

−∞
fX|Y (u, a)du .

If X and Y are discretely distributed:

FX|Y (x, a) = P(X ≤ x|Y = a) =
∑

xi∈[−∞,x]∩supp(pX)

pX|Y (xi, a) .
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Pairs of random variables Joint, marginal, and conditional distributions

Joint, marginal, and conditional distributions for a bivariate
normal probability distribution

Source: https://www.prioritysystem.com/glossaryh.html
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Pairs of random variables Covariance and Correlation
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Pairs of random variables Covariance and Correlation

Covariance I

The covariance quantifies the statistical relation of two random
variables by considering their behavior with respect to their respective
expectations.

Definition (Covariance)

For two random variables X and Y with E[X],E[Y ] < ∞, the covariance
of X and Y , denoted by Cov(X,Y ), is defined as

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E[XY ]− E[X]E[Y ] .

Note that, by definition,

Cov(X,X) = E[XX]− E[X]E[X] = E[X2]− E[X]2 = Var(X) .
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Pairs of random variables Covariance and Correlation

Covariance II

Furthermore, for independent random variables X and Y , it
immediately follows that

Cov(X,Y ) = E[X]E[Y ]− E[X]E[Y ] = 0 .

Similarly, the following properties are easily proven:
1 Cov(X,Y ) = Cov(Y,X).

2 Cov(aX, Y ) = aCov(X,Y ) for some constant a ∈ R.

3 Cov(X + c, Y ) = Cov(X,Y ) for some constant c ∈ R.

4 Cov(X + Y,Z) = Cov(X,Z) + Cov(Y, Z) for some third randon
variable Z.
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Pairs of random variables Covariance and Correlation

Variance of sums

In addition to indicating the statistical relationship between random
variables, the covariance is helpful for calculating the variance of sums
of random variables.

Specifically, for two random variables X and Y , and a random variable
defined as Z := X + Y the following holds:

Var(Z) = Cov(Z,Z)

= Cov(X + Y,X + Y )

= Cov(X,X) + Cov(X,Y ) + Cov(Y,X) + Cov(Y, Y )

= Var(X) + Var(Y ) + 2Cov(X,Y ) .

More generally, for constants a, b ∈ R, we have

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y ) .
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Pairs of random variables Covariance and Correlation

Correlation I

While the covariance is already very helpful and central to many
methods, its magnitude is always dependent on the range of values the
two variables in question take.

There are many situations where the answer to the question "How
related are two random variables X and Y on a scale from −1 to 1?"
is of interest.

−→ This question is answered by the correlation, which, for two random
variables X and Y , is denoted by ρXY or corr(X,Y ).

This is achieved by calculating the covariance of the standardized
version of each random variable.
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Pairs of random variables Covariance and Correlation

Correlation II

For a random variable X, the standardized version, with we denote by

Xstand, is defined as Xstand :=
X − E[X]√

Var(X)
.

Definition (Correlation)

The correlation of two random variables X and Y , is defined as

ρXY = Cov(Xstand, Ystand) = Cov

(
X − E[X]√

Var(X)
,
Y − E[Y ]√
Var(Y )

)

= Cov

(
X√

Var(X)
,

Y√
Var(Y )

)
=

Cov(X,Y )√
Var(X)

√
Var(Y )

.
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Pairs of random variables Covariance and Correlation

Correlation III

For two random variables X and Y , we say that
X and Y are uncorrelated, if ρXY = 0 and

X and Y are positively/negatively correlated, if ρXY > 0 and
ρXY < 0, respectively.

It clearly holds that ρXY = 0 ⇔ Cov(X,Y ) = 0 and, therefore, the
following holds for two uncorrelated random variables X and Y

Var(X,Y ) = Var(X) + Var(Y ) + 2 · 0 = Var(X) + Var(Y ) .
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Pairs of random variables Covariance and Correlation

Correlation IV

Here are some neat properties of the correlation of two random variables X
and Y :

1 −1 ≤ corr(X,Y ) ≤ 1,

2 corr(X,Y ) = 1 ⇒ there exist constants a ∈ R>0 and b ∈ R s.t.
Y = aX + b,

3 corr(X,Y ) = −1 ⇒ there exist constants a ∈ R<0 and b ∈ R s.t.
Y = aX + b,

4 For some constants a, b ∈ R>0 the following holds:
corr(aX + b, cY + d) = corr(X,Y ).
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Theoretical side-note: Fubini’s theorem
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Theoretical side-note: Fubini’s theorem

Theoretical side-note

Next, we will look at random vectors, i.e. vectors with random
variables as entries.

Technically, the theoretical foundations (corresponding to what we
looked at in the last lecture) of such objects would first require

the introduction of Product spaces and Product measures

as well as the consideration of measurable functions from Ω to
Rk, k ∈ N.

These concepts are not really relevant to applied statistics. However,
there is one related theorem (versions of) which is (are) very relevant.

Hannah Kümpel Multivariate Verfahren 40 / 104



Theoretical side-note: Fubini’s theorem

Fubini’s Theorem

Fubini’s theorem, heuristically, tells us that we can calculate an
integral over (a subset of) Rk, k ∈ N as an iterated integral in
arbitrary order, if the integral of the absolute value is finite.

An example: For some function h : R2 −→ R and set
A := [a1, b1]× [a2, b2]; a1, a2, b1, b2 ∈ R, if we know that∫

A
|h(x, y)|dλ(x, y) < ∞

it immediately follows that∫
A
h(x, y)dλ(x, y) =

∫ b1

a1

∫ b2

a2

h(x, y)dydx =

∫ b2

a2

∫ b1

a1

h(x, y)dxdy .

For a formal version, see Fubini, G. (1907), ‘Sugli integrali multipli.’,
Rom. Acc. L. Rend. (5) 16(1), 608–614..
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Theoretical side-note: Fubini’s theorem

Why should we care about this?

Clearly, we use iterated integrals when calculating probabilities for
joint distributions.

For the common established distributions, you can always assume that
Fubini’s theorem applies. However, when dealing with complicated and
unconventional situations, it’s validity might need to be verified!

Example

The function f : R2 −→ R defined by

f(x, y) :=


1, if x ≥ 0 and x ≤ y < x+ 1
−1, if x ≥ 0 and x+ 1 ≤ y < x+ 2
0, otherwise,

cannot be calculated as an iterated integral, since

0 =

∫∫
f(x, y) dy dx ̸=

∫∫
f(x, y) dx dy = 1 .
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Multivariate Distributions
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Multivariate Distributions Extending the concepts to vector notation

More than two random variables

All the concepts we just considered for two random variables can be
extended to three or more random variables.

When dealing with multiple (p ∈ N>2) random variables X1, ..., Xp, it
is usually convenient to write them in vector notation.

Specifically, we consider the random vector

X =

X1
...
Xp


with realizations in Rp.
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Multivariate Distributions Extending the concepts to vector notation

Extending expectation and variance

The expected value vector of a p-dimensional random vector X is
defined as

E[X] =
(
E[X1], . . . ,E[Xp]

)⊤
.

The covariance matrix, often denoted by V(X), is defined as
E[(X− E[X])(X− E[X])⊤], which is equal to

E

 (X1 − EX1)
2 (X1 − EX1)(X2 − EX2) ... (X1 − EX1)(Xp − EXp)

(X2 − EX2)(X1 − EX1) (X2 − EX2)
2 ... (X2 − EX2)(Xp − EXp)

. . . .. . . .. . . .

(Xp − EXp)(X1 − EX1) (Xp − EXp)(X2 − EX2) ... (Xp − EXp)
2



=


Var(X1) Cov(X1, X2) ... Cov(X1, Xp)

Cov(X2, X1) Var(X2) ... Cov(X2, Xp)
. . . .. . . .. . . .

Cov(Xp, X1) Cov(XpX2) ... Var(Xp)

 .
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Multivariate Distributions Extending the concepts to vector notation

Which of these matrices is a covariance matrix?

−→ Σ3 and Σ4.
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Multivariate Distributions Extending the concepts to vector notation

Covariance and correlation in multivariate cases (continued)

By definition, the covariance matrix has the following neat properties:
It is

1 square

2 symmetric and

3 positive semi-definite.

In the context of a random vector X =
(
X1, . . . , Xp

)⊤, the
correlation of two random variables that are elements of said vector,
i.e. ρXiXj , i, j ∈ {1, ..., p}, is sometimes called marginal correlation.
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Multivariate Distributions Extending the concepts to vector notation

Extending multivariate distributions from 2 to more dims I

Equivalently to the case of two random variables, the joint
cumulative distribution function (joint CDF) of p ∈ N random
variables X1, X2, . . . , Xp is given by

FX1... Xp(x1, x2, . . . , xp) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xp ≤ xp) .

p ∈ N random variables X1, X2, . . . , Xp are said to be independent
and identically distributed (i.i.d.) if they are independent, and they
have the same marginal distributions:

FX1(x) = FX2(x) = ... = FXp(x) ∀x ∈ R .
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Multivariate Distributions Extending the concepts to vector notation

Extending multivariate distributions from 2 to more dims II

Again, equivalently to before, p ∈ N random variables X1, X2, . . . , Xp

are jointly continuous if there exists a nonnegative function
fX1... Xp : Rp −→ R, so that, for any set A ∈ B(Rp) with, we have

P

(
(X1, X2, . . . , Xp) ∈ A

)
=

∫
...

∫
A

...

∫
fX1...Xp(x1, x2, . . . , xp)dx1dx2 . . . dxp .

Also, the function fX1...Xp(x1, x2, . . . , xp) is called the joint
probability density function of X1, X2, . . . , Xp.

The joint probability (mass) function of p ∈ N jointly discrete
random variables X1, X2, . . . , Xp is defined as

pX1... Xp(x1, x2, . . . , xp) := P
(
X1 = x1, X2 = x2, . . . , Xp = xp

)
.
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Multivariate Distributions Extending the concepts to vector notation

Extending multivariate distributions from 2 to more dims III

The conditional and marginal probability density/mass functions for p ∈ N
random variables X1, X2, . . . , Xp are again defined analogously to the case
of two random variables (see slides 25ff. and 29ff.):

Given the joint CDF FX1... Xp(x1, x2, . . . , xp), the marginal CDF FXi

of the random variable Xi for any i ∈ {1, ..., p} is given by the function

FXi(xi) = FX1... Xp(∞, . . . ,∞, xi,∞, . . . ,∞) .

The conditional probability density/mass function of Xi given
X1, . . . , Xi−1, Xi+1, . . . Xp for any i ∈ {1, ..., p} is defined by

pXi|X1,...,Xi−1,Xi+1,...Xp
(x1, x2, . . . , xp) =

pX1... Xp(x1, x2, . . . , xp)

pX1,...,Xi−1,Xi+1,...Xp(x1, . . . , xi−1, xi+1, . . . xp)
.
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Multivariate Distributions Extending the concepts to vector notation

Extending multivariate distributions from 2 to more dims IV

The idea of independence is also exactly the same as before: p ∈ N
random variables X1, X2, . . . , Xp are independent, if for all
(x1, x2, ..., xp) ∈ Rp

for continuous X1, X2, . . . , Xp, the joint density is given by

fX1... Xp(x1, x2, . . . , xp) =

p∏
i=1

fXi(xi) ,

and for discrete X1, X2, . . . , Xp, the joint probability (mass) function
is given by

pX1... Xp(x1, x2, . . . , xp) =

p∏
i=1

pXi(xi)
(
=

p∏
i=1

P(Xi = xi)
)
.
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Multivariate Distributions Relevant examples

Multivariate Normal distribution

We denote a p-dimensional random vector that follows the
multivariate normal distribution by X ∼ Np(µ,Σ) and the density
function is given by

f : Rp −→ R, x 7→ 1

(2π)p/2 | Σ |1/2
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
.

Parameters:
µ ∈ Rp: expected value

Σ ∈ Rp×p: covariance matrix

Support: µ+ span(Σ) ⊆ Rp
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Multivariate Distributions Relevant examples

Multivariate normal distribution: special cases

For p = 1 we get the univariate normal distribution with parameters
µ = E(X) and Σ = Var(X).

The standard multivariate normal distribution with parameters

µ = 0 =

0
...
0

 , Σ = I =

1 . . . 0
. . .

0 . . . 1

 ,

Thusly distributed random vectors are denoted as X ∼ Np(0, 1).
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Multivariate Distributions Relevant examples

Some specific properties

If X ∼ Np(µ,Σ) holds, then Y = AX+b with (q× p)–matrix A and
(q × 1)–vector b is in turn multivariate normally distributed with

Y ∼ Nq(Aµ+ b, AΣAT ) .

If X ∼ Np(µ,Σ) holds, then Y = Σ−1/2(X − µ) is multivariate
standard normally distributed, i.e. Y ∼ Np(0, I).
Thus, the quadratic form (X− µ)TΣ−1(X− µ) is χ2–distributed:

(X− µ)TΣ−1(X− µ) ∼ χ2(p) .
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Multivariate Distributions Relevant examples

Conditional normal distribution

Consider X ∼ N(µ,Σ) which is partitioned into XT = (XT
1 ,X

T
2 ) as

follows:

µT =

(
µ1

µ2

)
,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

The following then holds:

X1|X2 ∼ N (µ1|2,Σ1|2),

with

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 .

See https://statproofbook.github.io/P/mvn-cond for a proof.

Hannah Kümpel Multivariate Verfahren 65 / 104

https://statproofbook.github.io/P/mvn-cond


Multivariate Distributions Relevant examples

Multinomial distribution

While the Binomial distribution models n independent trials of an
experiment with two possible outcomes, the multinomial distribution is
a generalization to n independent trials with k mutually exclusive
outcomes.

Parameters: n ∈ N, k ∈ N, pi ∈ [0, 1] with
∑k

i=1 pi = 1

Support:

{
(x1, ..., xk)

⊤
∣∣∣xi ∈ {0, . . . , n},∀i ∈ {1, . . . , k},

k∑
i=1

xi = n
}

Probability (mass) function: f(x1, . . . , xk) =
n!

x1! . . . xk!
px1
1 · . . . · pxk

k
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Multinomial distribution example
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Multivariate Distributions Relevant examples

Dirichlet distribution I

The Dirichlet distribution is the multivariate generalization of the Beta
distribution.

Parameter: K ∈ N≥2, α = (α1, . . . , αK)⊤ ∈ RK with αi > 0

Support:
{
(x1, . . . , xK)⊤

∣∣∣xi ∈ [0, 1] :
∑K

i=1 xi = 1
}

Density:

f(x) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1
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Multivariate Distributions Relevant examples

Dirichlet distribution II

Properties:

(X1, . . . , Xi +Xj , . . . , Xk) ∼ Dir(α1, . . . , αi + αj , . . . , αK)

For K independent Gamma distributed random variables
Y1 ∼ Gamma(α1, θ), . . . , YK ∼ Gamma(αK , θ) with
V =

∑K
i=1 Yi ∼ Gamma(

∑K
i−1 αi, θ) the following holds

X = (X1, . . . , XK) =
(
Y1
V , . . . , YK

V

)
∼ Dir(α1, . . . , αK)

Dirichlet distributions are commonly used as prior distributions. In
fact, the Dirichlet distribution is the conjugate prior of the categorical
distribution and multinomial distribution.
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Dirichlet distribution examples
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Multivariate Distributions Relevant examples

Multivariate hypergeometric distribution

This distribution corresponds to the generalization of “drawing without
replacement”. n elements are drawn from a total of N , grouped into K
classes containing N1, . . . , NK elements, respectively.

The probability mass function is given by

P (X1 = n1, . . . , XK = nK) =

∏K
k=1

(
Nk
nk

)(
N
n

) with
∑

nk = n .
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Multivariate Distributions Relevant examples

Wishart-Verteilung

Consider the random variables X1, . . . ,Xm
i.i.d.∼ Np(0,Σ). The following

matrix is then Wishart distributed with parameters Σ und m ∈ N (i.e.
M ∼ Wp(Σ,m))

M =

m∑
i=1

XiX
⊤
i = X⊤X ∈ Rp×p .

If p = 1, then M =
∑m

i=1X
2
i ∼ χ2(m), with Xi ∼ N(0, σ2)

⇒ The Wishart distribution is the multivariate generalization of the
χ2− distribution.
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Multivariate Distributions Relevant examples

Wilks’ Λ distribution I

Consider two independent random variables A ∼ Wp(I,m) and
B ∼ Wp(I, n) then

Λ =
det(A)

det(A+B)

is Wilks’ Λ-distributed with parameters p, m, and n.

Λ ∼ Λ(p,m, n)

If p = 1, then A ∼ χ2(m) and B ∼ χ2(n) and thus we get:
Λ ∼ B(m/2, n/2)

Wilks’ Λ-distribution is used for testing in the context of one-way
analysis of variance.
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Multivariate Distributions Relevant examples

Wilks’ Λ distribution II

Properties:

1. For the one-dimensional special case A ∼ χ2(1), B ∼ χ2(1) we get
the Beta–distribution Λ(1, 1, 1) =̂B(0.5, 0.5).

2. The distributions Λ(p,m, n) and Λ(n,m+ n− p, p) are identical.

Hannah Kümpel Multivariate Verfahren 74 / 104



Multivariate Distributions Relevant examples

Hotellings T 2 distribution

Hotellings T 2 distribution is used for multivariate hypothesis testing
problems (specifically the multivariate generalization of the t-test).

Consider the independent random vector d ∼ Np(0, I) and random
matrix M ∼ Wp(I,m). The quadratic form

u = md⊤M−1d ∈ R

is then Hotelings T 2 distributed with parameter p and m (we write
u ∼ T 2(p,m)).

The support is

{
R>0 , if p = 1,
R≥0 , otherwise.
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Multivariate Distributions Relevant examples

Hotellings T 2 distribution pdf and cdf plots
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Estimating distributions and characteristics from data

The Data I

Let’s say we are given a data set with n observations of m variables:
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Estimating distributions and characteristics from data

The Data II

Question: How do we write this data down mathematically?

Answer: There is no one right answer! But, most of the time, we will
consider the rows to be random vectors X1, . . . ,Xn drawn i.i.d.,
meaning independent and identically distributed.

Definition (i.i.d.)

A collection of n ∈ N>0 random variables or vectors with realization in Rp

is said to be independent and identically distributed, or i.i.d., iff the
following two conditions hold:

FX1(x) = FXk
(x) ∀k ∈ {1, . . . , n} and ∀x ∈ Rp

FX1,...,Xn (x1, . . . , xn) = FX1 (x1) · . . . · FXn (xn) ∀x1, . . . , xn ∈ Rp .
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Empirical mean, variance, and covariance I

Sometimes, we might just be interested in some characteristics of the
distribution defined by the CDF FXk

(x) ∀k ∈ {1, . . . , n}, such as
the espected value.

Other times, we might have made a distributional assumption, such as
“normal distribution” and just need to estimate the parameters.

Given the sequence of data points {xi}i=1,...,n, with xi representing an
observation of a univariate random variable (xi ∈ R) or a random vector
p ∈ N>0 (xi ∈ Rp) variables, some common empirical estimators of
distribution characteristics include the following:
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Empirical mean, variance, and covariance II

The arithmetic mean is an intuitive choice for empirically estimating
the expected value:

x̄ =
1

n

n∑
i=1

xi .

The sample variance is used for empirically estimating the variance

S2 =
1

n− 1

∑
(xi − x̄)2 .

Finally, for two variables with realizations {x(1)i }i=1,...,n, {x(2)i }i=1,...,n

the sample covariance is given by

covx(1)x(2) =
1

n− 1

∑
(x

(1)
i − x̄(1))

∑
(x

(2)
i − x̄(2)) .
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Empirical correlation I

In statistics, the term "correlation" is often used to refer to various
measures of the relationship between the two variables.

→ There are different types correlation coefficients, e.g. rank coefficients
etc.

The formal correlation of two random variables X and Y , defined as
Cov(X,Y )√

Var(X)
√

Var(Y )
, measures the linear association between variables

(this is also why ρXY = 0 DOES NOT imply independence, only
the other way around).
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Empirical correlation II

For two variables with realizations {xi}i=1,...,n, {yi}i=1,...,n , this
correlation ρXY can be empirically estimated via the Pearson
correlation coefficient

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

The following visualizes the Pearson correlation coefficient for different
data points. (By Denis Boigelot, original uploader was Imagecreator - Own work, original uploader

was Imagecreator, CC0, https://commons.wikimedia.org/w/index.php?curid=15165296)
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Empirical correlation III
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Estimating distributions and characteristics from data Empirical mean, (co)variance, and correlation

Estimating the data’s distribution “from scratch”

Let’s say that we

are assuming our observations are realizations of i.i.d. random
variables/vectors (RVs)

but we do not have a certain distribution D in mind to make the
assumption

X1, . . . ,Xn
i.i.d∼ D

(
some parameters

)
.

How can we still make inferences about the distribution from which
the data was drawn?
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Side Note: Categorical variables

Side-Note: Categorical variables I

When dealing with data, we often distinguish between metric/numeric
and categorical variables.

Usually, metric variables take values in R, while a categorical variable
C only takes values, of any kind, including text, that are elements of a
finite set defining the possible values C may take.

A classical example would be a variable with two possible values, such
as “ individual smokes” and “ individual doesn’t smoke”.
−→ Of course, if we want this variable to take values in R, we can
simply recode it as

c̃i =

{
1, if ci = {individual smokes}
0, if ci = {individual doesn’t smoke} .

(⋆)
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Side Note: Categorical variables

Side-Note: Categorical variables II

Q1: What about if C can take more than two, lets say k ∈ N>2, values?

A1: We can repeat the procedure of eq.(⋆) k − 1 times.

Q2: Why not k times?

A2: If all k − 1 new variables representing a possible value of the ith
observation of C are equal to 0, this means that ci is equal to the kth
value for which we didn’t create a separate column.

=⇒ This is called dummy coding.
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Side Note: Categorical variables

Side-Note: Dummy coding in R

In R, we can use the fastDummies package to dummy code quickly :)

Calling
library(kableExtra)
fastDummies_example <- data.frame(ID = 1:6,

sex = c("male", "male", "intersex","intersex","female","female"),
choice = c("YES", "NO", "YES", "NO","YES", "NO"),
DOB = as.Date(c("1999-01-01", "2003-12-30","2001-05-20",

"2000-08-17", "1997-12-10","2000-06-27")),
stringsAsFactors = FALSE)

recoded <- fastDummies::dummy_cols(fastDummies_example, select_columns = c("sex","choice"))
kbl(recoded) %>%

kable_classic_2(full_width = F)

gives us
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Estimating distributions and characteristics from data Simply Estimating the data’s distribution “from scratch”

Relative Frequency

This can be used for any kind of data, including a mix of metric and
categorical variables!

Given the sequence of data points {xi}i=1,...,n, with xi representing
an observation of one (xi ∈ R) or p ∈ N>0 (xi ∈ Rp) variables, the
following is clearly a valid estimation of a discrete probability function
for a random variable with realizations in {xi}i=1,...,n:

p̂(x) =
1

n

n∑
i=1

1{x=xi} .

→ each data point gets assigned the probability
#data point appears in the data set

n
.
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Estimating distributions and characteristics from data Simply Estimating the data’s distribution “from scratch”

The CDF of relative frequency I

You may have already dealt with what is often referred to as the

empirical distribution defined as F̂n(x) =
1

n

n∑
i=1

1{xi≤x}.

We can also write it out as follows:

F̂n(x) = P (X ≤ x) =
∑

ω∈supp(f̂n)∩[−∞,x]

P (X = ω)

=
∑

ω∈supp(f̂n)∩[−∞,x]

1

n

n∑
i=1

1{ω=xi}

=
1

n

n∑
i=1

∑
ω∈supp(f̂n)∩[−∞,x]

1{ω=xi} .
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Estimating distributions and characteristics from data Simply Estimating the data’s distribution “from scratch”

The CDF of relative frequency II

Q: Can we just use that formula for our data made up of observations
{xi}i=1,...,n?

A: Immediately, iff xi ∈ R, ∀i ∈ {1, . . . , n}! However,

For xi ∈ Rp, p ≥ 2 : the usual preorder (binary relation that is
reflexive and transitive) ≤ that we use on R does not extend to Rn,
n ∈ N>1, we would first need to establish a fitting preorder, if we
want to quantify the joint distribution of two or more variables
together.

If our categories aren’t ordered, we have no chance at all.

Still, we can always use the relative frequency! We just won’t have
a CDF to go with it.
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Estimating distributions and characteristics from data More complicated procedures to estimate distributions

CHALLENGE TIME!

Next, you will all have 20 minutes to (by yourself or in a group) think of
ways to define an empirical CDF for data that has more than one column!

You can come up with creative solutions yourself or browse the internet for
inspiration - if you find (an) interesting paper(s) that’s also great!

The person(s) presenting the result I’m most impressed with will get a
small prize :))
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Estimating distributions and characteristics from data More complicated procedures to estimate distributions

Kernel density estimation (KDE) I

An option designed purely for density estimation - i.e. applicable only
when all variables are metric - is KDE.

Given the sequence of data points {xi}i=1,...,n, with xi representing
an observation of one (xi ∈ R) or p ∈ N>0 (xi ∈ Rp) metric variables,
the following can be used to estimate the continuous density for a
random variable with realizations in {xi}i=1,...,n:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
,

where K is the kernel — a non-negative function — and h > 0 is a
smoothing parameter called the bandwidth.
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Estimating distributions and characteristics from data More complicated procedures to estimate distributions

Kernel density estimation (KDE) II

This method is usually how histogram plots are smoothed. The following
and all later KDE-graphics are taken from this nice lecture about density
estimation.
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Estimating distributions and characteristics from data More complicated procedures to estimate distributions

Kernel density estimation (KDE) III

The smoothing parameter h is key - it should be chosen neither too small
nor too large.
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Estimating distributions and characteristics from data More complicated procedures to estimate distributions

Kernel density estimation (KDE) IV

How do we choose a kernel? It should satisfy the following

1 K(x) is symmetric.

2
∫
K(x)dx = 1.

3 limx→−∞ K(x) = limx→+∞ K(x) = 0.

Some commonly chosen kernels are:

Gaussian K(x) =
1√
2π

e
−x2

2 ,

Uniform K(x) =
1

2
1{−1≤x≤1},

Epanechnikov K(x) =
3

4
·max

{
1− x2, 0

}
.

Hannah Kümpel Multivariate Verfahren 96 / 104



Estimating distributions and characteristics from data More complicated procedures to estimate distributions

Kernel density estimation (KDE) V
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Data generating processes (DGPs) I

Of course, smoothing histograms is neat - but can we use KDE for
anything else?

Absolutely! f̂h defines a data generating process (DGP) - i.e. a way for
us to “generate” new data points from the same distribution as the
data we have already observed.

Be careful
While being able to generate new data points is great, it will only be as
“good” as the data we have already observed.
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Data generating processes (DGPs) II

Q: What would we use this for?

A: So much! Just some examples include:

More complex parameter estimation.

Calculating probability via Monte Carlo Integration.

Model validation.

Posterior predictive checks.
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Example: Bootstrap estimation I

Definition (The bootstrap principle, see also this lecture)
1 x1, x2, . . . , xn is a data sample drawn from a distribution F .
2 u is a statistic computed from the sample.
3 F ∗ is the empirical distribution of the data (the resampling

distribution).
4 x∗1, x

∗
2, . . . , x

∗
n is a resample of the data of the same size as the

original sample
5 u∗ is the statistic computed from the resample.

Then the bootstrap principle says that
1 F ∗ is approximately equal to F .
2 The statistic u is well approximated by u∗.
3 The variation of u is well approximated by the variation of u∗.
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Example: Bootstrap estimation II

Here, we are sampling with replacement, so you could say that the
relative frequency p̂ is the probability function that defines our DGP.

We can of course use bootstrap to estimate our mean/expected value
and variance the same way we would have done on the original data.

However, we could also use the bootstrap principle as follows:

1 Calculate the set {δ∗}Bb=1 with δ∗ := x̄∗ − x̄.

2 Calculate the 0.025 and 0.975 quantiles of {δ∗}Bb=1, denoted by δ∗0.025
and δ∗0.975.

3 Get a 95% CI for the mean via

[x̄− δ∗0.025, x̄+ δ∗0.975] .
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Example: Monte Carlo Integration I

Monte Carlo Integration is a technique to approximate the integral
over a multidimensional function g : Rl −→ Rm, l,m ∈ N>0.

Specifically, consider a set M ⊂ Rm and

a sample of n points x1, . . . ,xn from the Uniform distribution on M
and

V to be the volume of M , i.e. V :=
∫
Rm 1{x∈M}d(x).

Then, we can approximate∫
M

g(x)dx ≈ V · 1
n

n∑
i=1

g(xi) .
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Example: Monte Carlo Integration II

A common special case is when m = 1. Then, for a, b ∈ R we can
approximate ∫ b

a
g(x)dx ≈ b− a

n

n∑
i=1

g(xi) ,

where x1, . . . ,xn are sampled from the U(a, b) distribution.

Of course, that means that integrate w.r.t. any distribution we can
generate draws from and thereby calculate probability on sets.

⇒ This is where DGPs become super helpful.
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Outlook: Current DGP Research

Another context in which DGPs are of interest is privacy concerns - to
preserve privacy, it would be super neat if we could share data with
the same characteristics as what we observed without sharing the
actual data.

Two more fancy ways to estimate DGPs:

1 Fitting bayesian models and using the posterior distribution:
https://www.jmlr.org/papers/volume18/15-257/15-257.pdf

2 Large Language Learners: https://arxiv.org/pdf/2210.06280
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